论文标题

在小组和公里国家随机行走

Random walks on groups and KMS states

论文作者

Christensen, Johannes, Thomsen, Klaus

论文摘要

经典的建筑与离散组$γ$ a compact $γ$ -space $ \partial_mγ$的瞬态随机步行相结合,称为马丁边界。由此产生的交叉产品$ c^*$ - 代数$ c(\partial_mγ)\rtimes_rγ$配备了由Martin内核给出的单参数的一组自动形态,这些自动形态定义了马丁边界。在本文中,我们研究了KMS的流量状态,并在随机行走的泊松边界微不足道并且$γ$是无扭转的非质量非质量双曲线群时获得完整的描述。我们还构建了示例,以表明除这些情况外,KMS状态的结构可能更加复杂。

A classical construction associates to a transient random walk on a discrete group $Γ$ a compact $Γ$-space $\partial_M Γ$ known as the Martin boundary. The resulting crossed product $C^*$-algebra $C(\partial_M Γ) \rtimes_r Γ$ comes equipped with a one-parameter group of automorphisms given by the Martin kernels that define the Martin boundary. In this paper we study the KMS states for this flow and obtain a complete description when the Poisson boundary of the random walk is trivial and when $Γ$ is a torsion free non-elementary hyperbolic group. We also construct examples to show that the structure of the KMS states can be more complicated beyond these cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源