论文标题
在Neumann边界条件下,Schrödinger-Bopp-Podolsky系统的归一化解决方案
Normalized solutions to a Schrödinger-Bopp-Podolsky system under Neumann boundary conditions
论文作者
论文摘要
在本文中,我们研究了$ \ mathbb r^3 $具有非恒定耦合因子的界面和平滑域中的部分微分方程的Schrödinger-Bopp-Podolsky系统。在边界数据的兼容条件下,我们通过ljusternik-schnirelmann理论推断出存在和多样性。
In this paper we study a Schrödinger-Bopp-Podolsky system of partial differential equations in a bounded and smooth domain of $\mathbb R^3$ with a non constant coupling factor. Under a compatibility condition on the boundary data we deduce existence and multiplicity of solutions by means of the Ljusternik-Schnirelmann theory.