论文标题
一千小时:自动驾驶运动预测数据集
One Thousand and One Hours: Self-driving Motion Prediction Dataset
论文作者
论文摘要
受大规模数据集对ML系统的影响的动机,我们介绍了迄今为止最大的自动驾驶数据集用于运动预测,其中包含1000多个小时的数据。这是由加利福尼亚州帕洛阿尔托的一条固定路线的20个自动驾驶汽车组成的舰队,在四个月的时间内收集。它由170,000个场景组成,每个场景的长度为25秒,并捕获了自动驾驶系统的感知输出,该系统随着时间的推移编码附近车辆,骑自行车的人和行人的精确位置和动作。最重要的是,该数据集包含一个高清语义图,上面有15,242个标记元素和该区域上高清空中视图。我们表明,使用此大小的数据集极大地改善了关键自动驾驶问题的性能。结合提供的软件套件,该系列构成了迄今为止开发自动驾驶机器学习任务的最大,最详细的数据集,例如运动预测,运动计划和仿真。完整数据集可在http://level5.lyft.com/上找到。
Motivated by the impact of large-scale datasets on ML systems we present the largest self-driving dataset for motion prediction to date, containing over 1,000 hours of data. This was collected by a fleet of 20 autonomous vehicles along a fixed route in Palo Alto, California, over a four-month period. It consists of 170,000 scenes, where each scene is 25 seconds long and captures the perception output of the self-driving system, which encodes the precise positions and motions of nearby vehicles, cyclists, and pedestrians over time. On top of this, the dataset contains a high-definition semantic map with 15,242 labelled elements and a high-definition aerial view over the area. We show that using a dataset of this size dramatically improves performance for key self-driving problems. Combined with the provided software kit, this collection forms the largest and most detailed dataset to date for the development of self-driving machine learning tasks, such as motion forecasting, motion planning and simulation. The full dataset is available at http://level5.lyft.com/.