论文标题

$ \ bar \ partial $ - 产品域的均匀解决方案的均匀估计值

Uniform estimates for the canonical solution to the $\bar\partial$-equation on product domains

论文作者

Dong, Robert Xin, Pan, Yifei, Zhang, Yuan

论文摘要

我们在$ c^2 $边界的笛卡尔产物上获得$ \ bar \ partial u = f $的规范解决方案的统一估计,当$ c^2 $边界连续到边界时。这概括了Landucci对更高维产品域的Bidisc的结果。特别是,它回答了Kerzman的连续基准问题。

We obtain uniform estimates for the canonical solution to $\bar\partial u=f$ on the Cartesian product of bounded planar domains with $C^2$ boundaries, when $f$ is continuous up to the boundary. This generalizes Landucci's result for the bidisc toward higher dimensional product domains. In particular, it answers an open question of Kerzman for continuous datum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源