论文标题
$ \ bar \ partial $ - 产品域的均匀解决方案的均匀估计值
Uniform estimates for the canonical solution to the $\bar\partial$-equation on product domains
论文作者
论文摘要
我们在$ c^2 $边界的笛卡尔产物上获得$ \ bar \ partial u = f $的规范解决方案的统一估计,当$ c^2 $边界连续到边界时。这概括了Landucci对更高维产品域的Bidisc的结果。特别是,它回答了Kerzman的连续基准问题。
We obtain uniform estimates for the canonical solution to $\bar\partial u=f$ on the Cartesian product of bounded planar domains with $C^2$ boundaries, when $f$ is continuous up to the boundary. This generalizes Landucci's result for the bidisc toward higher dimensional product domains. In particular, it answers an open question of Kerzman for continuous datum.