论文标题

关键的3-Hypergraphs(详细版本)

Critical 3-hypergraphs (detailed version)

论文作者

Boussairi, Abderrahim, Chergui, Brahim, Ille, Pierre, Zaidi, Mohamed

论文摘要

给定3个hypergraph $ h $,如果每个$ e \ e(h)$中的每个$ e \ a $ e \ e \ e \ cap m \ neq \ neq \ neqyyset $ and $ e \ setminus m \ neq \ emptyset $ cap $ e \ cap cap cap cap cap和cap cap cap,则cap和cap m, $ n \在m $中,我们有$(e \ setminus \ {m \})\ cup \ {n \} \ in E(h)$。例如,$ \ emptyset $,$ v(h)$和$ \ {v \} $,其中$ v \ in v(h)$是$ h $的模块,称为Trivial。如果其所有模块都是微不足道的,则3 hypergraph是主要的。此外,如果通过去除一个顶点获得的所有诱导的亚液质图(并不是质量),那么它的所有诱导的亚液膜都不是主要的。我们表征了关键的3 hypergraphs。

Given a 3-hypergraph $H$, a subset $M$ of $V(H)$ is a module of $H$ if for each $e\in E(H)$ such that $e\cap M\neq\emptyset$ and $e\setminus M\neq\emptyset$, there exists $m\in M$ such that $e\cap M=\{m\}$ and for every $n\in M$, we have $(e\setminus\{m\})\cup\{n\}\in E(H)$. For example, $\emptyset$, $V(H)$ and $\{v\}$, where $v\in V(H)$, are modules of $H$, called trivial. A 3-hypergraph is prime if all its modules are trivial. Furthermore, a prime 3-hypergraph is critical if all its induced subhypergraphs, obtained by removing one vertex, are not prime. We characterize the critical 3-hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源