论文标题

相对自由的有限级代数

Relatively free algebras of finite rank

论文作者

de Mello, Thiago Castilho, Yasumura, Felipe Yukihide

论文摘要

令$ \ mathbb {k} $为特征零的字段,$ b = b_0+b_1 $ a有限维度关联超级级。在本文中,我们研究了由$ b $的格拉斯曼信封定义的品种$ \ mathfrak v $的相对自由代数的多项式身份。我们还考虑了由$ b $,$ g^{(k)}(b)$的$ k $ th Grassmann信封,该信封由$ k $生成的格拉斯曼代数构建,而不是无限的尺寸格拉斯曼代数。我们专门研究代数$ _2(g)$和$ ut_2(g^{(k)})$的研究,可以将其视为Grassmann信封和$ k $ -th Grassmann Invelope,分别是Superalgebra $ _2(\ Mathbb {k} [k} [k} [k} [u])$,$ ut_2 $^2 = 2 = 2 = 2 = 2 = 2 = 1 $^2 = 1 $^2 = 1 $^2 = 1 $。

Let $\mathbb{K}$ be a field of characteristic zero and $B=B_0+B_1$ a finite dimensional associative superalgebra. In this paper we investigate the polynomial identities of the relatively free algebras of finite rank of the variety $\mathfrak V$ defined by the Grassmann envelope of $B$. We also consider the $k$-th Grassmann Envelope of $B$, $G^{(k)}(B)$, constructed with the $k$-generated Grassmann algebra, instead of the infinite dimensional Grassmann algebra. We specialize our studies for the algebra $UT_2(G)$ and $UT_2(G^{(k)})$, which can be seen as the Grassmann envelope and $k$-th Grassmann envelope, respectively, of the superalgebra $UT_2(\mathbb{K}[u])$, where $u^2=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源