论文标题

估计开销流离失所

Estimating Displaced Populations from Overhead

论文作者

Hadzic, Armin, Christie, Gordon, Freeman, Jeffrey, Dismer, Amber, Bullard, Stevan, Greiner, Ashley, Jacobs, Nathan, Mukherjee, Ryan

论文摘要

我们介绍了一种深度学习方法,以使用高分辨率开销图像对位移营地进行细粒度的估计。我们在2018年和2019年对无人机图像进行了训练和评估我们的方法与孟加拉国Cox Bazar的难民营的人口数据交叉引用。我们提出的方法在隔离营地图像中达到7.02%的绝对百分比误差。我们认为,我们使用现实世界流离失所的camp数据进行的实验构成了开发工具的重要一步,使人道主义社区能够有效,迅速地应对全球流离失所危机。

We introduce a deep learning approach to perform fine-grained population estimation for displacement camps using high-resolution overhead imagery. We train and evaluate our approach on drone imagery cross-referenced with population data for refugee camps in Cox's Bazar, Bangladesh in 2018 and 2019. Our proposed approach achieves 7.02% mean absolute percent error on sequestered camp imagery. We believe our experiments with real-world displacement camp data constitute an important step towards the development of tools that enable the humanitarian community to effectively and rapidly respond to the global displacement crisis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源