论文标题
使用深度重建和自主系统预测的异常检测
Anomaly Detection using Deep Reconstruction and Forecasting for Autonomous Systems
论文作者
论文摘要
我们建议使用Frontal Camera Video和IMU读数来检测异质自主系统中的异常自动源系统中的异常。鉴于视频和IMU数据没有同步,因此分别分析了每个视频。利用有条件的gan的基于视觉的系统分析了即时的三帧,并尝试预测下一帧。基于使用预测误差和阈值估算的差异程度,将框架分为异常情况或正常情况。基于IMU的系统利用两种方法来对时间戳进行分类。第一个是LSTM自动编码器,它重建了三个连续的IMU向量,第二个是LSTM预报器,用于使用前三个IMU向量来预测下一个向量。基于重建误差,预测误差和阈值,时间戳被归类为异常情况或正常情况。算法的组成在IEEE信号处理杯异常检测挑战2020中赢得了亚军。在由正常情况和异常情况组成的摄像机框架数据集中,我们达到了94%的测试准确性,F1得分为0.95。此外,我们在包含正常IMU数据的测试集上达到了100%的精度,在异常IMU数据的测试集中,F1得分为0.98。
We propose self-supervised deep algorithms to detect anomalies in heterogeneous autonomous systems using frontal camera video and IMU readings. Given that the video and IMU data are not synchronized, each of them are analyzed separately. The vision-based system, which utilizes a conditional GAN, analyzes immediate-past three frames and attempts to predict the next frame. The frame is classified as either an anomalous case or a normal case based on the degree of difference estimated using the prediction error and a threshold. The IMU-based system utilizes two approaches to classify the timestamps; the first being an LSTM autoencoder which reconstructs three consecutive IMU vectors and the second being an LSTM forecaster which is utilized to predict the next vector using the previous three IMU vectors. Based on the reconstruction error, the prediction error, and a threshold, the timestamp is classified as either an anomalous case or a normal case. The composition of algorithms won runners up at the IEEE Signal Processing Cup anomaly detection challenge 2020. In the competition dataset of camera frames consisting of both normal and anomalous cases, we achieve a test accuracy of 94% and an F1-score of 0.95. Furthermore, we achieve an accuracy of 100% on a test set containing normal IMU data, and an F1-score of 0.98 on the test set of abnormal IMU data.