论文标题

用LookAhead-Minmax驯服甘恩

Taming GANs with Lookahead-Minmax

论文作者

Chavdarova, Tatjana, Pagliardini, Matteo, Stich, Sebastian U., Fleuret, Francois, Jaggi, Martin

论文摘要

众所周知,生成的对手网络训练挑战。基本的MinMax优化非常容易受到随机梯度的方差和相关游戏矢量场的旋转成分的差异。为了应对这些挑战,我们提出了用于MinMax优化的LookAhead算法,该算法最初仅用于单个客观最小化。我们LookAhead-Minmax的回溯步骤自然处理了旋转游戏动力学,该属性被确定为使梯度上升下降方法在文献中经常分析的挑战示例。此外,它隐含地处理高方差而无需使用大型迷你批次,这对于达到最先进的性能至关重要。 MNIST,SVHN,CIFAR-10和ImageNet的实验结果证明了将LookAhead-Minmax与Adam或Adam或外部的明显优势,在性能和改善的稳定性方面,可忽略不计的记忆和计算成本。使用30倍少的参数和16倍较小的迷你匹配者,我们通过在不使用类标签的情况下获得12.19的FID,在CIFAR-10上的类别依赖性Biggan的表现优于报告的依赖性Biggan的性能,从而在共同的计算资源的范围内实现了最新的GAN培训。

Generative Adversarial Networks are notoriously challenging to train. The underlying minmax optimization is highly susceptible to the variance of the stochastic gradient and the rotational component of the associated game vector field. To tackle these challenges, we propose the Lookahead algorithm for minmax optimization, originally developed for single objective minimization only. The backtracking step of our Lookahead-minmax naturally handles the rotational game dynamics, a property which was identified to be key for enabling gradient ascent descent methods to converge on challenging examples often analyzed in the literature. Moreover, it implicitly handles high variance without using large mini-batches, known to be essential for reaching state of the art performance. Experimental results on MNIST, SVHN, CIFAR-10, and ImageNet demonstrate a clear advantage of combining Lookahead-minmax with Adam or extragradient, in terms of performance and improved stability, for negligible memory and computational cost. Using 30-fold fewer parameters and 16-fold smaller minibatches we outperform the reported performance of the class-dependent BigGAN on CIFAR-10 by obtaining FID of 12.19 without using the class labels, bringing state-of-the-art GAN training within reach of common computational resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源