论文标题
循环量子神经网络
Recurrent Quantum Neural Networks
论文作者
论文摘要
复发性神经网络是机器学习中许多序列模型的基础,例如机器翻译和语音合成。相反,应用的量子计算仍处于起步阶段。然而,已经存在量子机学习模型,例如已成功使用的变异量子本素层,例如在能量最小化任务的背景下。在这项工作中,我们构建了一个量子复发性神经网络(QRNN),在诸如序列学习和整数数字分类之类的非平凡任务上具有出色的性能。 QRNN细胞是由参数化的量子神经元构建的,该神经元与振幅扩增一起创建了其输入和细胞状态的多项式的非线性激活,并允许在每个步骤的类别上提取概率分布的概率分布。为了研究模型的性能,我们在Pytorch中提供了实现,该实现允许使用数千个参数对参数化的量子电路进行相对有效的优化。我们通过基准优化超参数来建立QRNN培训设置,并分析合适的网络拓扑,以从Elman的开创性论文(1990)中对时间结构学习的简单记忆和序列预测任务进行简单的记忆和序列预测任务。然后,我们通过供应每个图像像素by像素来评估MNIST分类的QRNN。并利用现代数据增强作为预处理步骤。最后,我们分析网络的统一性在多大程度上抵消了困扰许多现有量子分类器和经典RNN的消失梯度问题。
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning, such as machine translation and speech synthesis. In contrast, applied quantum computing is in its infancy. Nevertheless there already exist quantum machine learning models such as variational quantum eigensolvers which have been used successfully e.g. in the context of energy minimization tasks. In this work we construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks such as sequence learning and integer digit classification. The QRNN cell is built from parametrized quantum neurons, which, in conjunction with amplitude amplification, create a nonlinear activation of polynomials of its inputs and cell state, and allow the extraction of a probability distribution over predicted classes at each step. To study the model's performance, we provide an implementation in pytorch, which allows the relatively efficient optimization of parametrized quantum circuits with thousands of parameters. We establish a QRNN training setup by benchmarking optimization hyperparameters, and analyse suitable network topologies for simple memorisation and sequence prediction tasks from Elman's seminal paper (1990) on temporal structure learning. We then proceed to evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step. Finally, we analyse to what extent the unitary nature of the network counteracts the vanishing gradient problem that plagues many existing quantum classifiers and classical RNNs.