论文标题
Sunyaev-Zeldovich效应层析成像探测的宇宙热史
The Cosmic Thermal History Probed by Sunyaev-Zeldovich Effect Tomography
论文作者
论文摘要
宇宙热史通过宇宙中平均热能密度的演变量化,是由结构的生长驱动的,因为巴里恩斯在倒塌的暗物质晕圈中受到冲击。可以通过热阳光Sunyaev-Zeldovich(SZ)效应背景的红移依赖性幅度来探测此过程。为此,我们在$ \ it {planck} $和红外天文卫星任务中跨越了八个天空强度图,并在斯隆数字天空调查中具有200万光谱红移参考。这将为远红外的快照光谱传递到微波背景光,这是红移的函数,最高为$ z \ sim3 $。我们将它们分解为SZ和热粉尘组件。我们的SZ测量值直接限制$ \ langle bp _ {\ rm e} \ rangle $,halo偏见加权的平均电子压力,最高$ z \ sim 1 $。这是迄今为止达到的最高红移,由于光谱参考文献,它具有不相关的红移箱。我们从$ 7 \ times 10^times 10^5〜 {\ rm k} $ a $ z = 1 $ t $ z = 1 $至$ 2 \ $ 2 \ $ 2 \ 2 \ times 10^6〜 {\ rm k} $ 10^6〜 {\ rm k} $的今天,从$ 7 \ times 10^6〜 {\ rm k} $中发现,我们发现密度加权平均电子温度$ \ bar {t} _ {\ rm {e}} $的密度加权平均温度的增加三倍增加三倍。超过$ z = 1 $ - $ 0 $,我们目睹了当今平均热能密度$ρ_{\ rm {th}} $的接近$ 70 \%$,并具有相应的密度参数$ $ω_ {\ rm th} $达到$ 1.5 \ \ \ \ \ rm th} $。我们发现$ \ it {planck} $的通用压力概况的质量偏差参数为$ b = 1.27 $(或$ 1-b = 1/b = 0.79 $),与气体运动中非热压力的幅度以及质量组装中的湍流一致。我们估计红移集成的平均康普顿参数$ y \ sim1.2 \ times10^{ - 6} $,将通过未来的光谱失真实验对其进行测试。其中一半以上来自$ z <1 $的大规模结构,我们直接检测到。
The cosmic thermal history, quantified by the evolution of the mean thermal energy density in the universe, is driven by the growth of structures as baryons get shock heated in collapsing dark matter halos. This process can be probed by redshift-dependent amplitudes of the thermal Sunyaev-Zeldovich (SZ) effect background. To do so, we cross-correlate eight sky intensity maps in the $\it{Planck}$ and Infrared Astronomical Satellite missions with two million spectroscopic redshift references in the Sloan Digital Sky Surveys. This delivers snapshot spectra for the far-infrared to microwave background light as a function of redshift up to $z\sim3$. We decompose them into the SZ and thermal dust components. Our SZ measurements directly constrain $\langle bP_{\rm e} \rangle$, the halo bias-weighted mean electron pressure, up to $z\sim 1$. This is the highest redshift achieved to date, with uncorrelated redshift bins thanks to the spectroscopic references. We detect a threefold increase in the density-weighted mean electron temperature $\bar{T}_{\rm{e}}$ from $7\times 10^5~{\rm K}$ at $z=1$ to $2\times 10^6~{\rm K}$ today. Over $z=1$-$0$, we witness the build-up of nearly $70\%$ of the present-day mean thermal energy density $ρ_{\rm{th}}$, with the corresponding density parameter $Ω_{\rm th}$ reaching $1.5 \times10^{-8}$. We find the mass bias parameter of $\it{Planck}$'s universal pressure profile of $B=1.27$ (or $1-b=1/B=0.79$), consistent with the magnitude of non-thermal pressure in gas motion and turbulence from mass assembly. We estimate the redshift-integrated mean Compton parameter $y\sim1.2\times10^{-6}$, which will be tested by future spectral distortion experiments. More than half of which originates from the large-scale structure at $z<1$, which we detect directly.