论文标题
通过在线双层优化进行图像分类学习数据增强
Learning Data Augmentation with Online Bilevel Optimization for Image Classification
论文作者
论文摘要
数据增强是用于改善概括性能的机器学习的关键实践。但是,找到最佳数据增强超标仪需要域知识或计算要求的搜索。我们通过提出一种有效的方法来自动培训网络,以学习有效的转换分布以改善其概括。使用二元优化,我们使用验证集直接优化数据增强参数。该框架可以用作通用解决方案,以与分类器(例如分类器)共同学习最佳数据增强。结果表明,我们的联合培训方法产生的图像分类精度可比仔细手工制作的数据增强相当或更好。但是,它不需要在数据增强超标仪上昂贵的外部验证循环。
Data augmentation is a key practice in machine learning for improving generalization performance. However, finding the best data augmentation hyperparameters requires domain knowledge or a computationally demanding search. We address this issue by proposing an efficient approach to automatically train a network that learns an effective distribution of transformations to improve its generalization. Using bilevel optimization, we directly optimize the data augmentation parameters using a validation set. This framework can be used as a general solution to learn the optimal data augmentation jointly with an end task model like a classifier. Results show that our joint training method produces an image classification accuracy that is comparable to or better than carefully hand-crafted data augmentation. Yet, it does not need an expensive external validation loop on the data augmentation hyperparameters.