论文标题

AVE:通过授权提供帮助

AvE: Assistance via Empowerment

论文作者

Du, Yuqing, Tiomkin, Stas, Kiciman, Emre, Polani, Daniel, Abbeel, Pieter, Dragan, Anca

论文摘要

使用人工代理进行人为辅助应用的一个困难在于,挑战是准确协助一个人的目标。现有的方法倾向于依靠推断人的目标,这在有许多潜在目标或难以确定的候选目标时具有挑战性。我们提出了一个新的范式来提供帮助,而是通过增强人类控制环境的能力,并通过增强增强强化学习来形式化这种方法。这个任务不足的目标保留了该人的自主权和实现任何最终状态的能力。我们根据目标推断测试了反对协助的方法,突出了我们的方法克服因目标歧义或错误指定而导致的故障模式的方案。由于现有的估计连续域中授权的方法在计算上很难,无法实时学习的帮助,我们还提出了有效的授权启发的代理公制。使用此功能,我们能够在共享的自主用户研究中成功证明我们的方法,以通过人类的培训进行挑战性的模拟遥控任务。

One difficulty in using artificial agents for human-assistive applications lies in the challenge of accurately assisting with a person's goal(s). Existing methods tend to rely on inferring the human's goal, which is challenging when there are many potential goals or when the set of candidate goals is difficult to identify. We propose a new paradigm for assistance by instead increasing the human's ability to control their environment, and formalize this approach by augmenting reinforcement learning with human empowerment. This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state. We test our approach against assistance based on goal inference, highlighting scenarios where our method overcomes failure modes stemming from goal ambiguity or misspecification. As existing methods for estimating empowerment in continuous domains are computationally hard, precluding its use in real time learned assistance, we also propose an efficient empowerment-inspired proxy metric. Using this, we are able to successfully demonstrate our method in a shared autonomy user study for a challenging simulated teleoperation task with human-in-the-loop training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源