论文标题

Ginzburg-Landau类型的积分方程的Liouville定理

A Liouville theorem for an integral equation of the Ginzburg-Landau type

论文作者

Lei, Yutian, Xu, Xin

论文摘要

在本文中,我们关注的是非线性积分方程的liouville型结果\ begin {equation*} u(x)= \ oftrightArrow {l}+c _*\ int _ {\ mathbb {r}^{n}}} \ frac {u(1- | U |^{2}}} {| x-y |^y |^{n-α}}} \ end {equation*}在这里$ u:\ mathbb {r}^{n} \ to \ mathbb {r}^{k} $是一个有限的,均匀的,连续的,可区分的功能,具有$ k \ geq 1 $和$ 1 <α<α<n $,$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ roverRightArlOWROW {向量和$ c _*$是一个真正的常数。如果$ u $是有限的能源解决方案,我们证明$ | \ oferrightarrow {l} | \ in \ {0,1 \} $。此外,我们还提供了一个liouville type定理(即$ u \ equiv \ oferrightarrow {l} $)。

In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation \begin{equation*} u(x)=\overrightarrow{l}+C_*\int_{\mathbb{R}^{n}}\frac{u(1-|u|^{2})}{|x-y|^{n-α}}dy. \end{equation*} Here $u: \mathbb{R}^{n} \to \mathbb{R}^{k}$ is a bounded, uniformly continuous and differentiable function with $k \geq 1$ and $1<α<n$, $\overrightarrow{l} \in \mathbb{R}^{k}$ is a constant vector, and $C_*$ is a real constant. If $u$ is the finite energy solution, we prove that $|\overrightarrow{l}| \in \{0,1\}$. Furthermore, we also give a Liouville type theorem (i.e., $u \equiv \overrightarrow{l}$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源