论文标题

从平均退出时间的数据中提取非高斯管理法律

Extracting Non-Gaussian Governing Laws from Data on Mean Exit Time

论文作者

Zhang, Yanxia, Duan, Jinqiao, Jin, Yanfei, Li, Yang

论文摘要

在建立数学模型和观察某些复杂系统的系统状态时间序列方面的现有困难的激励,尤其是对于由非高斯征税运动驱动的系统,我们设计了一种方法,可以提取一种仅在平均退出时间上观察到的非高斯管理法律。可以观察到某些复杂系统的平均退出时间是可行的。通过观察,利用最小二乘意义上的稀疏回归技术来获得平均退出时间的近似函数表达。然后,我们通过解决非局部偏微分方程的逆问题并最大程度地减少误差目标函数,从而进一步学习发电机并进一步识别随机微分方程。最后,我们借助于原始系统的模拟数据来验证提出方法的功效。结果表明,该方法不仅可以适用于由高斯布朗运动驱动的随机动力系统,还可以应用于非高斯征费运动驱动的动力系统,包括那些具有复杂合理漂移的系统。

Motivated by the existing difficulties in establishing mathematical models and in observing the system state time series for some complex systems, especially for those driven by non-Gaussian Levy motion, we devise a method for extracting non-Gaussian governing laws with observations only on mean exit time. It is feasible to observe mean exit time for certain complex systems. With the observations, a sparse regression technique in the least squares sense is utilized to obtain the approximated function expression of mean exit time. Then, we learn the generator and further identify the stochastic differential equations through solving an inverse problem for a nonlocal partial differential equation and minimizing an error objective function. Finally, we verify the efficacy of the proposed method by three examples with the aid of the simulated data from the original systems. Results show that the method can apply to not only the stochastic dynamical systems driven by Gaussian Brownian motion but also those driven by non-Gaussian Levy motion, including those systems with complex rational drift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源