论文标题
SASO:通过多尺度语义关联和显着点聚类优化的连接3D语义构成分割
SASO: Joint 3D Semantic-Instance Segmentation via Multi-scale Semantic Association and Salient Point Clustering Optimization
论文作者
论文摘要
我们提出了一个名为SASO的新颖3D点云分割框架,该框架共同执行语义和实例分割任务。对于语义分割任务,灵感来自空间上下文中对象之间的固有相关性,我们提出了一个多尺度语义关联(MSA)模块,以探索语义上下文信息的建设性效果。例如,分割任务与以前仅在推理过程中使用聚类的工作不同,我们提出了一个显着点聚类优化(SPCO)模块,以将聚类过程引入培训过程中,并推动网络重点关注难以区分的点。此外,由于室内场景的固有结构,很少考虑类别分布的不平衡问题,但严重限制了3D场景感知的性能。为了解决这个问题,我们引入了一种自适应水填充采样(WFS)算法,以平衡培训数据的类别分布。广泛的实验表明,我们的方法在语义细分和实例分割任务中的基准数据集上优于最新方法。
We propose a novel 3D point cloud segmentation framework named SASO, which jointly performs semantic and instance segmentation tasks. For semantic segmentation task, inspired by the inherent correlation among objects in spatial context, we propose a Multi-scale Semantic Association (MSA) module to explore the constructive effects of the semantic context information. For instance segmentation task, different from previous works that utilize clustering only in inference procedure, we propose a Salient Point Clustering Optimization (SPCO) module to introduce a clustering procedure into the training process and impel the network focusing on points that are difficult to be distinguished. In addition, because of the inherent structures of indoor scenes, the imbalance problem of the category distribution is rarely considered but severely limits the performance of 3D scene perception. To address this issue, we introduce an adaptive Water Filling Sampling (WFS) algorithm to balance the category distribution of training data. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on benchmark datasets in both semantic segmentation and instance segmentation tasks.