论文标题
cu $ _2 $ o/ch $ _3 $ nh $ _3 $ PBI $ _3 $接口的原子量表模型和电子结构
Atomic scale model and electronic structure of Cu$_2$O/CH$_3$NH$_3$PbI$_3$ interfaces in perovskite solar cells
论文作者
论文摘要
在混合卤化物钙钛矿的太阳能电池中,氧化热已被认为是传统有机孔传输层的潜在替代方法。设备模拟使用该半导体预测了记录效率,但是实验结果尚未显示此趋势。关于CU $ _2 $ o/perovskite接口的更详细知识是必须提高光转换效率的。使用密度函数理论计算,在这里我们研究CH $ _3 $ nh $ _3 $ _3 $ pbi $ _3 $的接口使用Cu $ _2 $ O,以评估其对设备性能的影响。考虑到界面原子平面的不同组成,首次提供了这些接口的几种原子模型。根据最佳理论情况讨论了界面电子性能,但与实验实现和设备模拟有关。结果表明,Cu $ _2 $ o终止飞机中空缺的形成对于消除悬空的债券和陷阱状态至关重要。满足此条件的四个接口模型呈现一个有利于光伏转换的频带对齐。还研究了粘附的能量和跨界面的电荷转移。 CH $ _3 $ nh $ _3 $ pbi $ _3 $ in PBI $ _2 $ ATOMIC PLASES的终止似乎是最大程度地提高光转换效率的最佳选择。
Cuprous oxide has been conceived as a potential alternative to traditional organic hole transport layers in hybrid halide perovskite-based solar cells. Device simulations predict record efficiencies using this semiconductor, but experimental results do not yet show this trend. More detailed knowledge about the Cu$_2$O/perovskite interface is mandatory to improve the photoconversion efficiency. Using density functional theory calculations, here we study the interfaces of CH$_3$NH$_3$PbI$_3$ with Cu$_2$O to assess their influence on device performance. Several atomistic models of these interfaces are provided for the first time, considering different compositions of the interface atomic planes. The interface electronic properties are discussed on the basis of the optimal theoretical situation, but in connection with the experimental realizations and device simulations. It is shown that the formation of vacancies in the Cu$_2$O terminating planes is essential to eliminate dangling bonds and trap states. The four interface models that fulfill this condition present a band alignment favorable for photovoltaic conversion. Energy of adhesion, and charge transfer across the interfaces are also studied. The termination of CH$_3$NH$_3$PbI$_3$ in PbI$_2$ atomic planes seems optimal to maximize the photoconversion efficiency.