论文标题

有限套件包含近乎主要的根

Finite sets containing near-primitive roots

论文作者

Agrawal, Komal, Pollack, Paul

论文摘要

修复$ a \ in \ mathbb {z} $,$ a \ notin \ {0,\ pm 1 \} $。一个简单的参数表明,对于每个$ε> 0 $,几乎全部(渐近100%)Primes $ p $,$ a $ a $ modulo $ p $的乘法订单超过$ p^{\frac12-ε} $。 $ \ frac12 $替换为任何较大的常数,这是一个开放的问题。我们表明,如果$ a,b $是多重独立的,那么对于几乎所有的primes $ p $,$ a,b,ab,a^2b,ab^2 $之一的订单超过$ p^{\ frac {1} {2} {2}+\ frac {1} {1} {30}}}} $。相同的方法允许每个$ε> 0 $生产,显式有限集$ \ MATHCAL {a} $与属性几乎所有Primes $ p $,$ \ Mathcal {a} $的某些元素的订单超过$ p^{1-ε} $。 Modulo通用整数$ n $而不是Primes $ p $的订单相似的结果。

Fix $a \in \mathbb{Z}$, $a\notin \{0,\pm 1\}$. A simple argument shows that for each $ε> 0$, and almost all (asymptotically 100% of) primes $p$, the multiplicative order of $a$ modulo $p$ exceeds $p^{\frac12-ε}$. It is an open problem to show the same result with $\frac12$ replaced by any larger constant. We show that if $a,b$ are multiplicatively independent, then for almost all primes $p$, one of $a,b,ab, a^2b, ab^2$ has order exceeding $p^{\frac{1}{2}+\frac{1}{30}}$. The same method allows one to produce, for each $ε> 0$, explicit finite sets $\mathcal{A}$ with the property that for almost all primes $p$, some element of $\mathcal{A}$ has order exceeding $p^{1-ε}$. Similar results hold for orders modulo general integers $n$ rather than primes $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源