论文标题

使用自动飞行图像进行混凝土老化检测的生成损伤学习

Generative Damage Learning for Concrete Aging Detection using Auto-flight Images

论文作者

Yasuno, Takato, Ishii, Akira, Fujii, Junichiro, Amakata, Masazumi, Takahashi, Yuta

论文摘要

为了监视大型基础架构的状态,自动飞行无人机采集图像对于稳定角度和高质量图像有效。监督学习需要大型数据集,该数据集由图像和注释标签组成。积累图像需要很长时间,包括识别受损的感兴趣区域(ROI)。近年来,无监督的深度学习方法,例如用于异常检测算法的生成对抗网络(GAN)。当损坏的图像是发电机输入时,它倾向于从受损状态逆转到健康状态生成的图像。利用实际损坏的图像与生成的反向老化状态假图像之间的分布距离,可以从无监督的学习中自动检测到具体损害。本文提出了一种异常检测方法,使用未配对的图像到图像翻译映射从受损图像到近似健康状况的反向老化假货。我们将我们的方法应用于现场研究,并研究了方法对混凝土损害的健康监测的有用性。

In order to monitor the state of large-scale infrastructures, image acquisition by autonomous flight drones is efficient for stable angle and high-quality images. Supervised learning requires a large data set consisting of images and annotation labels. It takes a long time to accumulate images, including identifying the damaged regions of interest (ROIs). In recent years, unsupervised deep learning approaches such as generative adversarial networks (GANs) for anomaly detection algorithms have progressed. When a damaged image is a generator input, it tends to reverse from the damaged state to the healthy state generated image. Using the distance of distribution between the real damaged image and the generated reverse aging healthy state fake image, it is possible to detect the concrete damage automatically from unsupervised learning. This paper proposes an anomaly detection method using unpaired image-to-image translation mapping from damaged images to reverse aging fakes that approximates healthy conditions. We apply our method to field studies, and we examine the usefulness of our method for health monitoring of concrete damage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源