论文标题

电磁电子温度梯度湍流在Tokamak等离子体中的固有电流驱动

Intrinsic current drive by electromagnetic electron temperature gradient turbulence in tokamak plasmas

论文作者

He, Wen, Wang, Lu, Peng, Shuitao, Guo, Weixin, Zhuang, Ge

论文摘要

使用电磁(EM)陀螺仪方程表示平均平行电流密度演化方程。 EM电子温度梯度(ETG)湍流产生了两种类型的内在电流驱动机制。第一种类型是残留湍流的差异,包括残留应力样期限和类似动力的应力项。第二种类型称为残留湍流源,该源由密度和平行电场波动之间的相关性驱动。与残留湍流驱动的驱动相比,由残留湍流源驱动的固有电流密度可以忽略不计。估计了由EM ETG湍流驱动的固有电流密度与背景引导电流密度的比率。由残留的湍流驱动的局部固有电流密度用于湍流的中尺度变化,可以达到ITER标准场景的核心区域中的Bootstrap电流密度的80%,但在全球尺度上没有净内在电流。基于此,可能需要在以后的beta_e较高的设备中仔细考虑到由EM微扰动驱动的局部固有电流及其对安全系数局部修饰的影响,这是电子压力与磁性压力之间的比率。

The mean parallel current density evolution equation is presented using electromagnetic (EM) gyrokinetic equation. There exist two types of intrinsic current driving mechanisms resulted from EM electron temperature gradient (ETG) turbulence. The first type is the divergence of residual turbulent flux including a residual stress-like term and a kinetic stress-like term. The second type is named as residual turbulent source, which is driven by the correlation between density and parallel electric field fluctuations. The intrinsic current density driven by the residual turbulent source is negligible as compared to that driven by the residual turbulent flux. The ratio of intrinsic current density driven by EM ETG turbulence to the background bootstrap current density is estimated. The local intrinsic current density driven by the residual turbulent flux for mesoscale variation of turbulent flux can reach about 80% of the bootstrap current density in the core region of ITER standard scenario, but there is no net intrinsic current on a global scale. Based on this, the local intrinsic current driven by EM micro-turbulence and its effects on local modification of the profile of safety factor may be needed to be carefully taken into account in the future device with high beta_e which is the ratio between electron pressure to the magnetic pressure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源