论文标题
更新对F(t)触发宇宙学的限制以及与大爆炸核合成的一致性
Updating constraints on f(T) teleparallel cosmology and the consistency with Big Bang Nucleosynthesis
论文作者
论文摘要
我们专注于可行的$ f(t)$远程宇宙学模型,即功率定律,指数和方形指数,并在各个尺度上对其进化进行了详细的研究。实际上,根据较晚的时间测量,对这些模型进行了广泛的分析,而只能找到对早期行为的上限,即满足$ {}^4he $的原始丰度的大爆炸核合成(BBN)数据。从这些指示开始,我们执行分析,考虑背景和线性扰动演变和约束,超出标准六个宇宙学参数,在两种情况下,无论是否考虑了BBN一致性关系,$ f(t)$模型的自由参数。我们结合了宇宙微波背景,巴里昂声学振荡,超新星IA和星系聚类测量结果,并发现对特定$ f(t)$宇宙学的自由参数的狭窄约束都可以获得,但除了以前的精确度之外。虽然在氦气分数,$ y_p $和$ f(t)$的免费参数之间没有发现变性,但我们注意到,这些模型限制了当前哈勃参数,$ h_0 $,{比标准模型的程度高,与Riess等人完全兼容。对于Power Law $ F(T)$模型的测量。此外,在超过3- $σ$中,自由参数在非零值下受到约束,显示了对扩展重力模型的观测值的偏好。
We focus on viable $f(T)$ teleparallel cosmological models, namely power law, exponential and square-root exponential, carrying out a detailed study of their evolution at all scales. Indeed, these models were extensively analysed in the light of late time measurements, while it is possible to find only upper limits looking at the very early time behavior, i.e. satisfying the Big Bang Nucleosynthesis (BBN) data on primordial abundance of ${}^4He$. Starting from these indications, we perform our analysis considering both background and linear perturbations evolution and constrain, beyond the standard six cosmological parameters, the free parameters of $f(T)$ models in both cases whether the BBN consistency relation is considered or not. We use a combination of Cosmic Microwave Background, Baryon Acoustic Oscillation, Supernovae Ia and galaxy clustering measurements, and find that very narrow constraints on the free parameters of specific $f(T)$ cosmology can be obtained, beyond any previous precision. While no degeneration is found between the helium fraction, $Y_P$, and the free parameter of $f(T)$, we note that these models constrain the current Hubble parameter, $H_0$, {higher extent than the standard model} one, fully compatible with the Riess et al. measurement in the case of power law $f(T)$ model. Moreover, the free parameters are constrained at non-zero values in more than 3-$σ$, showing a preference of the observations for extended gravity models.