论文标题
MTSTEREO 2.0:使用玛克斯树的立体深度估计的准确性提高
MTStereo 2.0: improved accuracy of stereo depth estimation withMax-trees
论文作者
论文摘要
具有低功率资源(例如机器人技术和嵌入式系统)的系统需要从立体声图像对中进行有效但准确的深度提取。基于卷积神经网络的最新立体声匹配方法需要对GPU进行密集的计算,并且很难在嵌入式系统上部署。在本文中,我们提出了一种立体声匹配方法,称为MTSUREO 2.0,对于需要有效,准确的深度估计的有限资源系统。它基于图像对的最大树层次表示,我们用来识别沿图像扫描线识别匹配区域。该方法包括一个成本函数,该成本函数考虑了基于最大树的区域上下文信息的相似性,并确保了差异边框保存成本汇总方法。 mtstereo 2.0改进了其前身mtstereo 1.0,因为它a)部署更强大的成本函数,b)对不正确匹配的更彻底检测,c)计算具有像素级别的差异图,而不是节点级级别的精度。 mtstereo提供了准确的稀疏和半密度的深度估计,并且不需要基于CNN的方法进行密集的GPU计算。因此,它可以在具有低功率要求的嵌入式和机器人设备上运行。我们在几个基准数据集(即Kitti 2015,驾驶,Flythings3d,Middlebury 2014,Monkaa和Trimbot2020花园数据集)上测试了提出的方法,并实现了竞争的准确性和效率。该代码可从https://github.com/rbrandt1/maxtrees获得。
Efficient yet accurate extraction of depth from stereo image pairs is required by systems with low power resources, such as robotics and embedded systems. State-of-the-art stereo matching methods based on convolutional neural networks require intensive computations on GPUs and are difficult to deploy on embedded systems. In this paper, we propose a stereo matching method, called MTStereo 2.0, for limited-resource systems that require efficient and accurate depth estimation. It is based on a Max-tree hierarchical representation of image pairs, which we use to identify matching regions along image scan-lines. The method includes a cost function that considers similarity of region contextual information based on the Max-trees and a disparity border preserving cost aggregation approach. MTStereo 2.0 improves on its predecessor MTStereo 1.0 as it a) deploys a more robust cost function, b) performs more thorough detection of incorrect matches, c) computes disparity maps with pixel-level rather than node-level precision. MTStereo provides accurate sparse and semi-dense depth estimation and does not require intensive GPU computations like methods based on CNNs. Thus it can run on embedded and robotics devices with low-power requirements. We tested the proposed approach on several benchmark data sets, namely KITTI 2015, Driving, FlyingThings3D, Middlebury 2014, Monkaa and the TrimBot2020 garden data sets, and achieved competitive accuracy and efficiency. The code is available at https://github.com/rbrandt1/MaxTreeS.