论文标题
在quaternionic picard定理上
On a quaternionic Picard theorem
论文作者
论文摘要
PICARD的经典定理指出,非恒定全体形态函数$ f:\ mathbb {c} \ to \ mathbb {c} $最多可以避免一个值。我们研究了多少值的Quaternionic变量的非恒定切片$ f:\ mathbb {h} \ to \ mathbb {h} $可能会避免。
The classical theorem of Picard states that a non-constant holomorphic function $f:\mathbb{C}\to\mathbb{C}$ can avoid at most one value. We investigate how many values a non-constant slice regular function of a quaternionic variable $f:\mathbb{H}\to\mathbb{H}$ may avoid.