论文标题

量子通道相干的资源理论

The resource theory of coherence for quantum channels

论文作者

Kamin, F. H., Tabesh, F. T., Salimi, S., Kheirandish, F.

论文摘要

我们使用Choi-Jamiolkowsky同构来定义量子通道在资源理论框架中量子通道的相干性($ \ MATHCAL {QI} $ rec)的量子成分相对熵。突破性的渠道被引入免费操作及其相应的Choi状态作为自由状态。我们还显示了通道的连贯性与量子不一致之间的关系,并发现与任何量子通道的基础依赖性量子不对称不对称永远不会超过$ \ MATHCAL {QI} $ REC。 {也},我们证明$ \ Mathcal {Qi} $ rec正在减少任何可分开的量子不一致的通道,我们还声称它可以被视为量子通道的量子性。此外,我们证明,对于量子通道,连贯性(REC)的相对熵可以等效于其相应的Choi状态的REC,并且基础依赖性量子对称不分配永远无法超过连贯性。

We define the quantum-incoherent relative entropy of coherence ($\mathcal{QI}$ REC) of quantum channels in the framework of the resource theory by using the Choi-Jamiolkowsky isomorphism. Coherence-breaking channels are introduced as free operations and their corresponding Choi states as free states. We also show the relationship between the coherence of channel and the quantum discord and find that basis-dependent quantum asymmetric discord can never be more than the $\mathcal{QI}$ REC for any quantum channels. {Also}, we prove the $\mathcal{QI}$ REC is decreasing for any divisible quantum incoherent channel and we also claim it can be considered as the quantumness of quantum channels. Moreover, we demonstrate that for qubit channels, the relative entropy of coherence (REC) can be equivalent to the REC of their corresponding Choi states and the basis-dependent quantum symmetric discord can never exceed the coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源