论文标题

快速和低成本搜索HPC工作负载的有效云配置

Fast and Low-cost Search for Efficient Cloud Configurations for HPC Workloads

论文作者

Rosario, Vanderson Martins Do, Camacho, Thais A. Silva, Napoli, Otávio O., Borin, Edson

论文摘要

对于公司和研究人员而言,云计算资源的使用变得越来越重要。但是,考虑到各种各样的虚拟机类型,网络配置,数量的实例数量,还找到了减少成本和资源浪费的最佳配置,而实现可接受的性能,即使对于专家来说,也是一项艰巨的任务。因此,已经提出了许多用于找到给定程序的好或最佳配置的方法。在某些配置中观察应用程序的性能需要时间和金钱。因此,大多数方法不仅旨在找到良好的解决方案,还旨在降低搜索成本。一种方法是使用贝叶斯优化来观察最小可能的配置,从而降低了搜索成本,同时仍然找到良好的解决方案。另一种方法是使用一种名为Palemount迭代的技术,以使HPC工作负载的性能假设(不完全执行),从而降低了进行一个观察结果的成本,并使网格搜索解决方案可行。在这项工作中,我们表明这两种技术都可以一起使用,以进行更少和低成本的观察结果。我们表明,这种方法可以推荐帕累托最佳解决方案,这些解决方案平均比随机搜索要好1.68倍,并且可以通过6次更便宜的搜索。

The use of cloud computational resources has become increasingly important for companies and researchers to access on-demand and at any moment high-performance resources. However, given the wide variety of virtual machine types, network configurations, number of instances, among others, finding the best configuration that reduces costs and resource waste while achieving acceptable performance is a hard task even for specialists. Thus, many approaches to find these good or optimal configurations for a given program have been proposed. Observing the performance of an application in some configuration takes time and money. Therefore, most of the approaches aim not only to find good solutions but also to reduce the search cost. One approach is the use of Bayesian Optimization to observe the least amount possible of configurations, reducing the search cost while still finding good solutions. Another approach is the use of a technique named Paramount Iteration to make performance assumptions of HPC workloads without entirely executing them (early-stopping), reducing the cost of making one observation, and making it feasible to grid search solutions. In this work, we show that both techniques can be used together to do fewer and low-cost observations. We show that such an approach can recommend Pareto-optimal solutions that are on average 1.68x better than Random Searching and with a 6-time cheaper search.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源