论文标题
基于内核密度估计的多种影响点建议的相关性模型
Kernel Density Estimation based Factored Relevance Model for Multi-Contextual Point-of-Interest Recommendation
论文作者
论文摘要
如果可以从用户的偏好历史记录(利用)中提取信息,并将其与用户的当前上下文信息(Exploration)融合在一起,以预测当前上下文中的POI的“适当性”。为了平衡剥削和探索之间的权衡,我们提出了一个无监督的,通用的框架,涉及涉及的相关性模型(FRLM),构成了两个不同的组成部分,一个与历史背景有关,另一个与当前环境相对应。我们通过在嵌入式单词向量上使用内核密度估计(KDE)将术语之间的语义关系纳入POI描述符中的术语之间的语义关系,从而进一步概括了所提出的FRLM。此外,我们表明Trip-Qualifiers(例如'Trip-type','cancy-by')可能是有用的信息源,可用于提高建议效率。使用此类信息并不直接,因为用户对访问的POI的文本/评论通常不明确包含此类注释。我们采用一种弱监督的方法来预测用户配置文件中的评论文本与可能的旅行环境之间的关联。我们的实验是在TREC上下文建议2016数据集上进行的,证明了分解,基于KDE的概括和相关性模型的富含Trip-Qualifier富含环境的上下文可以改善POI建议。
An automated contextual suggestion algorithm is likely to recommend contextually appropriate and personalized 'points-of-interest' (POIs) to a user, if it can extract information from the user's preference history (exploitation) and effectively blend it with the user's current contextual information (exploration) to predict a POI's 'appropriateness' in the current context. To balance this trade-off between exploitation and exploration, we propose an unsupervised, generic framework involving a factored relevance model (FRLM), constituting two distinct components, one pertaining to historical contexts, and the other corresponding to the current context. We further generalize the proposed FRLM by incorporating the semantic relationships between terms in POI descriptors using kernel density estimation (KDE) on embedded word vectors. Additionally, we show that trip-qualifiers, (e.g. 'trip-type', 'accompanied-by') are potentially useful information sources that could be used to improve the recommendation effectiveness. Using such information is not straight forward since users' texts/reviews of visited POIs typically do not explicitly contain such annotations. We undertake a weakly supervised approach to predict the associations between the review-texts in a user profile and the likely trip contexts. Our experiments, conducted on the TREC contextual suggestion 2016 dataset, demonstrate that factorization, KDE-based generalizations, and trip-qualifier enriched contexts of the relevance model improve POI recommendation.