论文标题

使用自我监督和半监督的学习模拟大脑切除以进行腔分段

Simulation of Brain Resection for Cavity Segmentation Using Self-Supervised and Semi-Supervised Learning

论文作者

Pérez-García, Fernando, Rodionov, Roman, Alim-Marvasti, Ali, Sparks, Rachel, Duncan, John S., Ourselin, Sébastien

论文摘要

改良手术可能治愈耐药性局灶性癫痫,但只有40%至70%的患者在手术后获得癫痫发作自由。回顾性的定量分析可以阐明切除的结构和患者结构中的模式,以改善切除手术。但是,必须首先将切除腔对术后MR图像进行分割。卷积神经网络(CNN)是最新的图像分割技术,但需要大量注释的数据进行培训。医学图像的注释是一个耗时的过程,需要经过良好训练的评估者,并且经常患有评估者间的变异性高。自我监督的学习可用于从未标记的数据中生成培训实例。我们开发了一种算法来模拟术前MR图像的切除术。我们策划了一个新的数据集Episurg,其中包括431个术后和269个术前MR图像,来自431例接受改良手术的患者。除了Esipurg外,我们还使用了包括1813次术前MR图像的三个公共数据集进行培训。我们使用1)eipurg,2)公共数据集和3)两个图像在训练过程中在训练过程中飞行创建的图像进行了3D CNN培训了一个3D CNN。为了评估训练有素的模型,我们计算模型分割之间的骰子评分(DSC)和由三个人类评估者执行的200个手动注释。通过手动注释训练数据的模型获得了65.3(30.6)的中位数(四分位间范围)DSC。我们表现​​最好的模型的DSC,没有手动注释,是81.7(14.2)。为了进行比较,人类注释者之间的评价者一致性为84.0(9.9)。我们使用模拟切除腔展示了CNN的训练方法,该方法可以准确地分割实际切除腔,而无需手动注释。

Resective surgery may be curative for drug-resistant focal epilepsy, but only 40% to 70% of patients achieve seizure freedom after surgery. Retrospective quantitative analysis could elucidate patterns in resected structures and patient outcomes to improve resective surgery. However, the resection cavity must first be segmented on the postoperative MR image. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large amounts of annotated data for training. Annotation of medical images is a time-consuming process requiring highly-trained raters, and often suffering from high inter-rater variability. Self-supervised learning can be used to generate training instances from unlabeled data. We developed an algorithm to simulate resections on preoperative MR images. We curated a new dataset, EPISURG, comprising 431 postoperative and 269 preoperative MR images from 431 patients who underwent resective surgery. In addition to EPISURG, we used three public datasets comprising 1813 preoperative MR images for training. We trained a 3D CNN on artificially resected images created on the fly during training, using images from 1) EPISURG, 2) public datasets and 3) both. To evaluate trained models, we calculate Dice score (DSC) between model segmentations and 200 manual annotations performed by three human raters. The model trained on data with manual annotations obtained a median (interquartile range) DSC of 65.3 (30.6). The DSC of our best-performing model, trained with no manual annotations, is 81.7 (14.2). For comparison, inter-rater agreement between human annotators was 84.0 (9.9). We demonstrate a training method for CNNs using simulated resection cavities that can accurately segment real resection cavities, without manual annotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源