论文标题

在任意维度中的保形可累积性的代数条件

Algebraic Conditions for Conformal Superintegrability in Arbitrary Dimension

论文作者

Kress, Jonathan, Schöbel, Konrad, Vollmer, Andreas

论文摘要

我们表明,在(伪)riemannian歧管上的二阶可促进系统的定义产生了共同不变的可巩固性概念。共形等效性是著名的Stäckel变换的自然扩展,这反过来源自经典的Maupertuis-Jacobi原理。我们将最近开发的代数几何方法扩展了对任意高维的二阶可凝结系统的分类到共形的可整合系统,这些系统是通过在保形几何形状中定义的二阶可整合系统的保形尺度选择来提出的。 对于恒定曲率空间上的可整合系统,我们发现stäckel等效系统的共形尺度来自拉普拉斯式的特征函数,它们的等效性的特征是重量二的保形密度。 我们的方法产生了一个代数方程,该方程控制了多产类别的二阶二阶结构性可整合系统下的共同等效性分类。该类别包含迄今已知的所有非分级示例,并由一般谐波立方形式的第二个代数约束给出。这样,尚未解决的分类问题就被纳入了代数几何和几何不变理论的范围。特别是,在第三维中不存在障碍,因此以不受限制的单变量六分化为幌子,将已知的共同促进系统的已知分类重新侵蚀。在较高的维度中,障碍物是新的,从未被传统方法揭示。

We show that the definition of a second order superintegrable system on a (pseudo-)Riemannian manifold gives rise to a conformally invariant notion of superintegrability. Conformal equivalence is the natural extension of the well-known Stäckel transform, which in turn originates from the classical Maupertuis-Jacobi principle. We extend our recently developed algebraic geometric approach for the classification of second order superintegrable systems in arbitrarily high dimension to conformally superintegrable systems, which are presented via conformal scale choices of second order superintegrable systems defined within a conformal geometry. For superintegrable systems on constant curvature spaces, we find that the conformal scales of Stäckel equivalent systems arise from eigenfunctions of the Laplacian and that their equivalence is characterised by a conformal density of weight two. Our approach yields an algebraic equation that governs the classification under conformal equivalence for a prolific class of second order conformally superintegrable systems. This class contains all non-degenerate examples known to date, and is given by a simple algebraic constraint of degree two on a general harmonic cubic form. In this way the yet unsolved classification problem is put into the reach of algebraic geometry and geometric invariant theory. In particular, no obstruction exists in dimension three, and thus the known classification of conformally superintegrable systems is reobtained in the guise of an unrestricted univariate sextic. In higher dimensions, the obstruction is new and has never been revealed by traditional approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源