论文标题

预测魔兽世界中的客户流失

Predicting Customer Churn in World of Warcraft

论文作者

Khan, Sulman

论文摘要

《魔兽世界》是一款大型多人在线视频游戏,于2004年11月23日发行,由暴雪娱乐公司发行。与传统游戏只有单一的前期费用相反,WOW还每月订阅游戏。考虑到客户订阅,我们可以应用Churn预测的使用不仅可以预测客户是否会退订服务,还可以探索用户的游戏行为,以便获得对用户播放模式的更多了解。由于没有一个尺寸的性质,由于不同的服务以多种方式定义了流失,因此流失的问题有些复杂。在本文中,我们探讨了一个数据集,该数据集重点是2008年1月1日至2008年12月31日,因为它突出了游戏中主要内容更新的发布。机器学习用于本文的两个方面:生存分析和二进制分类。首先,我们使用Kaplan Meier估计器探索数据集,以预测持续时间,直到客户流失为止,最后预测一个人是否会在六个月内使用传统的机器学习算法(例如逻辑回归,支持向量机器,KNN分类器和随机森林)流动。从生存分析的结果来看,WOW客户的持续时间相对较长,直到搅动为止,这巩固了游戏的上瘾性。最后,在预测客户是否会在六个月内搅动时,以最佳性能算法进行了二进制分类。

World of Warcraft is a massively multiplayer online video game released on November 23, 2004, by Blizzard Entertainment. In contrast with traditional games only having a single upfront fee to play, WoW also has a monthly subscription to play the game. With customer subscriptions in mind, we can apply the use of churn prediction to not only predict whether a customer will unsubscribe from the service but explore the user's playing behavior to obtain more insight into user playing patterns. The churn problem is somewhat complex due to the nature of not having a one size fits all solution, as different services define churn in a variety of ways. In this paper, we explore a dataset that focuses on one year from January 1, 2008, until December 31, 2008, as it highlights the release of a major content update in the game. Machine learning is used in two aspects of this paper: Survival Analysis and Binary Classification. Firstly, we explore the dataset using the Kaplan Meier estimator to predict the duration until a customer churns, and lastly predict whether a person will churn in six months using traditional machine learning algorithms such as Logistic Regression, Support Vector Machine, KNN Classifier, and Random Forests. From the survival analysis results, WoW customers have a relatively long duration until churn, which solidifies the addictiveness of the game. Lastly, the binary classification performed in the best performing algorithm having a 96% ROC AUC score in predicting whether a customer will churn in six months.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源