论文标题
多类分类的概率分类向量机
Probabilistic Classification Vector Machine for Multi-Class Classification
论文作者
论文摘要
概率分类向量机(PCVM)综合了支持向量机和相关向量机的优势,从而为分类问题提供了稀疏的贝叶斯解决方案。但是,PCVM目前仅适用于二进制案例。将PCVM通过启发式投票策略(例如一VS静电案)或一vs-One将PCVM扩展到多级案例,通常会导致分类器做出矛盾的预测的困境,而这些策略可能会失去概率产出的好处。为了克服此问题,我们扩展了PCVM并提出了多类概率分类向量机(MPCVM)。 MPCVM已实现了两种学习算法,即一种自上而下的算法和一种自下而上的算法。自上而下的算法基于期望最大化算法获得了参数的最大A后验(MAP)点估计值,而自下而上的算法是通过最大化边际可能性的增量范式。 MPCVM的卓越性能,尤其是当研究问题具有大量类别时,对合成和基准数据集进行了广泛的评估。
The probabilistic classification vector machine (PCVM) synthesizes the advantages of both the support vector machine and the relevant vector machine, delivering a sparse Bayesian solution to classification problems. However, the PCVM is currently only applicable to binary cases. Extending the PCVM to multi-class cases via heuristic voting strategies such as one-vs-rest or one-vs-one often results in a dilemma where classifiers make contradictory predictions, and those strategies might lose the benefits of probabilistic outputs. To overcome this problem, we extend the PCVM and propose a multi-class probabilistic classification vector machine (mPCVM). Two learning algorithms, i.e., one top-down algorithm and one bottom-up algorithm, have been implemented in the mPCVM. The top-down algorithm obtains the maximum a posteriori (MAP) point estimates of the parameters based on an expectation-maximization algorithm, and the bottom-up algorithm is an incremental paradigm by maximizing the marginal likelihood. The superior performance of the mPCVMs, especially when the investigated problem has a large number of classes, is extensively evaluated on synthetic and benchmark data sets.