论文标题

使用小波的合并损失的自然梯度

Natural Gradient for Combined Loss Using Wavelets

论文作者

Ying, Lexing

论文摘要

自然梯度已被广泛用于优化损失功能在概率空间上的优化,其中重要的例子,例如用于Kullback-Leibler Divergence的Fisher-Rao梯度下降,用于运输相关功能的Wasserstein梯度下降,而Mahalanobis梯度梯度梯度梯度梯度梯度梯度梯度下降。本说明认为损失是这些示例的凸线性组合的情况。我们提出了一种新的天然梯度算法,通过使用紧凑的小波将大​​约对对角线进行对角线化。包括数值结果以证明所提出的算法的效率。

Natural gradients have been widely used in optimization of loss functionals over probability space, with important examples such as Fisher-Rao gradient descent for Kullback-Leibler divergence, Wasserstein gradient descent for transport-related functionals, and Mahalanobis gradient descent for quadratic loss functionals. This note considers the situation in which the loss is a convex linear combination of these examples. We propose a new natural gradient algorithm by utilizing compactly supported wavelets to diagonalize approximately the Hessian of the combined loss. Numerical results are included to demonstrate the efficiency of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源