论文标题
马丁在一般圆锥形中被杀死的非中心随机行走的边界
Martin boundary of a killed non-centered random walk in a general cone
论文作者
论文摘要
我们调查了马丁边界,以在$ {\ mathbb z}^d $上进行非中心随机步行,以$τ_\ vartheta $从凸锥上$ 0 $ 0 $ $ 0 $的第一次退出的时间杀死。该方法结合了较大的偏差估计值,比率限制定理和梯子高度过程。结果可用于确定马丁边界的第一次出口,这是从具有$ c^1 $边界的凸锥出口时杀死的随机步行。
We investigate Martin boundary for a non-centered random walk on ${\mathbb Z}^d$ killed up on the time $τ_\vartheta$ of the first exit from a convex cone with a vertex at $0$. The approach combines large deviation estimates, the ratio limite theorem and the ladder height process. The results are applied to identify the Martin boundary for a random walk killed upon the first exit from a convex cone having $C^1$ boundary.