论文标题

$ C^*$ - 可解决的组的代数的痕迹

Traces of $C^*$-algebras of connected solvable groups

论文作者

Beltita, Ingrid, Beltita, Daniel

论文摘要

我们对$ c^*$ - 代数$ c^*(g)的奇特状态简称的明确说明,任意连接的,第二可计数,本地紧凑,可解决的组$ g $。我们表明,从$ c^*$ - $ c^*$ - ABELIANIANT GROUP的代数的奇特状态下的每个奇特状态,除非$ c^*(g)$的所有奇异状态的核心的交集是适当的理想,除非$ g $是Abelian。结果,连接的可解决的非亚伯谎言组的$ c^*$ - 代数不能嵌入简单的Unital Af-Elgebra中。

We give an explicit description of the tracial state simplex of the $C^*$-algebra $C^*(G)$ of an arbitrary connected, second countable, locally compact, solvable group $G$. We show that every tracial state of $C^*(G)$ lifts from a tracial state of the $C^*$-algebra of the abelianized group, and the intersection of the kernels of all the tracial states of $C^*(G)$ is a proper ideal unless $G$ is abelian. As a consequence, the $C^*$-algebra of a connected solvable nonabelian Lie group cannot embed into a simple unital AF-algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源