论文标题

Glyfe:1型糖尿病中个性化葡萄糖预测模型的审查和基准

GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in Type-1 Diabetes

论文作者

De Bois, Maxime, Ammi, Mehdi, Yacoubi, Mounîm A. El

论文摘要

由于与糖尿病相关数据的敏感性,阻止它们在研究之间共享,因此很难评估葡萄糖预测领域的进展。为了解决这个问题,我们提出了Glyfe(血糖预测评估),这是基于机器学习的葡萄糖预测模型的基准。 为了确保结果的可重复性以及将来基准的可用性,我们提供了有关数据流的广泛详细信息。使用了两个数据集,其中第一个由UVA/PADOVA 1型糖尿病代谢模拟器(T1DMS)组成的10个成年人组成,第二个是由来自OHIOT1DM数据集的6个实际1型糖尿病患者组成的。预测模型对患者进行个性化,并在3个不同的预测范围(30、60和120分钟)上进行评估,并评估其准确性和临床可接受性。 提出了来自葡萄糖预测文献的九种不同模型的结果。首先,他们表明标准自回旋线性模型被基于内核的非线性和神经网络超过了。特别是,支持矢量回归模型脱颖而出,同时是最准确,最可接受的模型之一。最后,两个数据集的模型相对性能相同。这表明,即使由T1DMS模拟的数据并不能完全代表实际数据,它们也可以用于评估葡萄糖预测模型的预测能力。 这些结果是将来研究的比较的基础。在难以获得数据的领域,以及从不同研究的结果进行比较的情况下,Glyfe提供了将研究人员围绕标准化的共同环境收集研究人员的机会。

Due to the sensitive nature of diabetes-related data, preventing them from being shared between studies, progress in the field of glucose prediction is hard to assess. To address this issue, we present GLYFE (GLYcemia Forecasting Evaluation), a benchmark of machine-learning-based glucose-predictive models. To ensure the reproducibility of the results and the usability of the benchmark in the future, we provide extensive details about the data flow. Two datasets are used, the first comprising 10 in-silico adults from the UVA/Padova Type 1 Diabetes Metabolic Simulator (T1DMS) and the second being made of 6 real type-1 diabetic patients coming from the OhioT1DM dataset. The predictive models are personalized to the patient and evaluated on 3 different prediction horizons (30, 60, and 120 minutes) with metrics assessing their accuracy and clinical acceptability. The results of nine different models coming from the glucose-prediction literature are presented. First, they show that standard autoregressive linear models are outclassed by kernel-based non-linear ones and neural networks. In particular, the support vector regression model stands out, being at the same time one of the most accurate and clinically acceptable model. Finally, the relative performances of the models are the same for both datasets. This shows that, even though data simulated by T1DMS are not fully representative of real-world data, they can be used to assess the forecasting ability of the glucose-predictive models. Those results serve as a basis of comparison for future studies. In a field where data are hard to obtain, and where the comparison of results from different studies is often irrelevant, GLYFE gives the opportunity of gathering researchers around a standardized common environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源