论文标题

对脑MRI数据分类的3D CNN的解释

Interpretation of 3D CNNs for Brain MRI Data Classification

论文作者

Kan, Maxim, Aliev, Ruslan, Rudenko, Anna, Drobyshev, Nikita, Petrashen, Nikita, Kondrateva, Ekaterina, Sharaev, Maxim, Bernstein, Alexander, Burnaev, Evgeny

论文摘要

深度学习显示出许多医学图像分析任务的高潜力。神经网络可以与全尺寸数据一起工作,而无需大量的预处理和特征生成,因此可以丢失信息。最近的工作表明,特定大脑区域的形态差异可以在MRI上使用卷积神经网络(CNN)找到。但是,对现有模型的解释基于感兴趣的区域,不能扩展到整个图像上的体素图像解释。在当前的工作中,我们考虑了大规模开源数据集的年轻健康受试者的分类任务 - 对男性和女性之间大脑差异的探索。在本文中,我们扩展了先前的发现,从T1脑MRI扫描中的扩散张量成像中的性别差异。我们提供了Voxel-3D CNN的解释,比较了三种解释方法的结果:有意义的扰动,Grad CAM和引导后退流动,并在开源库中做出了贡献。

Deep learning shows high potential for many medical image analysis tasks. Neural networks can work with full-size data without extensive preprocessing and feature generation and, thus, information loss. Recent work has shown that the morphological difference in specific brain regions can be found on MRI with the means of Convolution Neural Networks (CNN). However, interpretation of the existing models is based on a region of interest and can not be extended to voxel-wise image interpretation on a whole image. In the current work, we consider the classification task on a large-scale open-source dataset of young healthy subjects -- an exploration of brain differences between men and women. In this paper, we extend the previous findings in gender differences from diffusion-tensor imaging on T1 brain MRI scans. We provide the voxel-wise 3D CNN interpretation comparing the results of three interpretation methods: Meaningful Perturbations, Grad CAM and Guided Backpropagation, and contribute with the open-source library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源