论文标题

级别设置的立体声,用于遮挡合作分组

Level Set Stereo for Cooperative Grouping with Occlusion

论文作者

Wang, Jialiang, Zickler, Todd

论文摘要

本地化立体声边界很困难,因为在与之相邻的封闭区域中不存在匹配提示。我们引入了一个能量和级别的优化器,该优化器通过编码遮挡的基本几何形状来改善边界:遮挡的空间范围必须等于导致它的差异跳跃的幅度。在米德尔伯里(Middlebury)和立体声数据集(Stereo Dataset)掉落事物的图形场景集合中,该模型比以前的咬合处理技术提供了更准确的边界。

Localizing stereo boundaries is difficult because matching cues are absent in the occluded regions that are adjacent to them. We introduce an energy and level-set optimizer that improves boundaries by encoding the essential geometry of occlusions: The spatial extent of an occlusion must equal the amplitude of the disparity jump that causes it. In a collection of figure-ground scenes from Middlebury and Falling Things stereo datasets, the model provides more accurate boundaries than previous occlusion-handling techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源