论文标题

在存在障碍的情况下,基于视觉的目标条件政策用于水下导航

Vision-Based Goal-Conditioned Policies for Underwater Navigation in the Presence of Obstacles

论文作者

Manderson, Travis, Higuera, Juan Camilo Gamboa, Wapnick, Stefan, Tremblay, Jean-François, Shkurti, Florian, Meger, David, Dudek, Gregory

论文摘要

我们提出NAV2GOAL,这是一种用于目标条件视觉导航的数据效率和端到端学习方法。我们的技术用于训练导航策略,该策略使机器人能够在没有任何先前地图的情况下提供的用户提供的稀疏地理路点,同时避免遇到障碍并选择涵盖感兴趣的用户信息区域的路径。我们的方法基于有条件模仿学习的最新进展。人类专家证明了通用,安全和信息丰富的行动。随后,通过在机器人的相对定位系统的指导下,通过对事后重新定位进行培训来扩展学习的政策,以通过培训进行目标条件,该系统不需要其他手动注释。我们将方法部署在开阔的海洋的一辆水下车上,以收集珊瑚礁的科学相关数据,这使我们的机器人可以安全,自主操作,即使在非常靠近珊瑚的情况下也是如此。我们的现场部署已在一公里的自动视觉导航上证明,在收集科学相关的数据的同时,机器人在40个路点上达到的订单。这是从敏感珊瑚的0.5 m高度内行驶的过程中完成的,并表现出明显的学习敏捷性,以克服湍流的海洋条件并积极避免碰撞。

We present Nav2Goal, a data-efficient and end-to-end learning method for goal-conditioned visual navigation. Our technique is used to train a navigation policy that enables a robot to navigate close to sparse geographic waypoints provided by a user without any prior map, all while avoiding obstacles and choosing paths that cover user-informed regions of interest. Our approach is based on recent advances in conditional imitation learning. General-purpose, safe and informative actions are demonstrated by a human expert. The learned policy is subsequently extended to be goal-conditioned by training with hindsight relabelling, guided by the robot's relative localization system, which requires no additional manual annotation. We deployed our method on an underwater vehicle in the open ocean to collect scientifically relevant data of coral reefs, which allowed our robot to operate safely and autonomously, even at very close proximity to the coral. Our field deployments have demonstrated over a kilometer of autonomous visual navigation, where the robot reaches on the order of 40 waypoints, while collecting scientifically relevant data. This is done while travelling within 0.5 m altitude from sensitive corals and exhibiting significant learned agility to overcome turbulent ocean conditions and to actively avoid collisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源