论文标题

古代晶界的原子结构

The atomic structure of ancient grain boundaries

论文作者

Bourni, Theodora, Langford, Mat, Tinaglia, Giuseppe

论文摘要

民主和早期原子主义者认为:“存在的所有事物的物质原因是原子和无效的结合。原子是永恒的,具有许多不同的形状,它们可以聚集在一起以创造可感知的事物。原子形状,布置和位置的差异会产生不同的现象”。像民原子一样,曲线缩短流的严峻收割解决方案是永恒且不可分割的 - 它不会脱离一条线,并且本身就是唯一的“渐近翻译者”。确认了Huisken和Sinestrari所描述的启发式[J.差异差距。 101,2(2015),267-287],我们表明,它通过适当的配置中的格里姆超级公寓家族的演变而演变,这引起了大量凸的古代和翻译解决方案,以使曲率流动到平均流动。我们在所有维度上构建了$ n \ ge 2 $,这是一个大型的新示例,包括对称示例和不对称示例,以及许多不通过翻译演变而来的永恒示例。后者解决了白色的猜想[J.阿米尔。数学。 Soc。 16,1(2003),123-138]。我们还提供了整个平板区域凸的古代解决方案的详细渐近分析。粗略地说,我们表明它们将“向后倒退”分解为典型的grim超人平面构型,以满足某些必要的条件。一个类似的分解可为永恒的解决方案提供“及时的前进”。结果之一是翻译人员的新刚性结果。另一个是,在二维中,解决方案必然在其平面的中间平面上对称。

Democritus and the early atomists held that "the material cause of all things that exist is the coming together of atoms and void. Atoms are eternal and have many different shapes, and they can cluster together to create things that are perceivable. Differences in shape, arrangement, and position of atoms produce different phenomena". Like the atoms of Democritus, the Grim Reaper solution to curve shortening flow is eternal and indivisible -- it does not split off a line, and is itself its only "asymptotic translator". Confirming the heuristic described by Huisken and Sinestrari [J. Differential Geom. 101, 2 (2015), 267-287], we show that it gives rise to a great diversity of convex ancient and translating solutions to mean curvature flow, through the evolution of families of Grim hyperplanes in suitable configurations. We construct, in all dimensions $n\ge 2$, a large family of new examples, including both symmetric and asymmetric examples, as well as many eternal examples that do not evolve by translation. The latter resolve a conjecture of White [J. Amer. Math. Soc. 16, 1 (2003), 123-138]. We also provide a detailed asymptotic analysis of convex ancient solutions in slab regions in general. Roughly speaking, we show that they decompose "backwards in time" into a canonical configuration of Grim hyperplanes which satisfies certain necessary conditions. An analogous decomposition holds "forwards in time" for eternal solutions. One consequence is a new rigidity result for translators. Another is that, in dimension two, solutions are necessarily reflection symmetric across the mid-plane of their slab.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源