论文标题

使用深度学习方法进行自动进度监控的材料识别

Material Recognition for Automated Progress Monitoring using Deep Learning Methods

论文作者

Mahami, Hadi, Ghassemi, Navid, Darbandy, Mohammad Tayarani, Shoeibi, Afshin, Hussain, Sadiq, Nasirzadeh, Farnad, Alizadehsani, Roohallah, Nahavandi, Darius, Khosravi, Abbas, Nahavandi, Saeid

论文摘要

人工智能的最新进步,尤其是深度学习,通过引入最先进的自动化方法来不可逆转地改变了许多领域。施工监测不是例外。作为建筑监测系统的一部分,材料分类和认可引起了深度学习和机器视觉研究人员的关注。但是,为了创建准备生产的系统,仍然有一条较长的覆盖道路。为了创建强大的系统,需要解决现实世界中的问题,例如不同的照明和达到可接受的准确性。在本文中,我们已经解决了这些问题,并达到了最先进的表现,即此任务的准确率为97.35%。此外,收集并公开发表了一个新的数据集,其中包含从几个建筑地点拍摄的11个类图像的1231张图像,以帮助该领域的其他研究人员。

Recent advancements in Artificial intelligence, especially deep learning, has changed many fields irreversibly by introducing state of the art methods for automation. Construction monitoring has not been an exception; as a part of construction monitoring systems, material classification and recognition have drawn the attention of deep learning and machine vision researchers. However, to create production-ready systems, there is still a long path to cover. Real-world problems such as varying illuminations and reaching acceptable accuracies need to be addressed in order to create robust systems. In this paper, we have addressed these issues and reached a state of the art performance, i.e., 97.35% accuracy rate for this task. Also, a new dataset containing 1231 images of 11 classes taken from several construction sites is gathered and publicly published to help other researchers in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源