论文标题

在线动态网络嵌入

Online Dynamic Network Embedding

论文作者

Huang, Haiwei, Li, Jinlong, He, Huimin, Chen, Huanhuan

论文摘要

网络嵌入是网络数据的非常重要的方法。但是,大多数算法只能处理静态网络。在本文中,我们提出了一种算法复发的神经网络嵌入(RNNE)来处理动态网络,该网络通常可以分为两类:a)随着时间的推移,其节点和边缘会增加(减小)拓扑上不断发展的图; b)边缘包含时间信息的时间图。为了处理动态网络的变化大小,rnne添加了未连接到任何其他节点的虚拟节点,并在新节点到达时替换它,以便在不同时间统一网络大小。一方面,RNNE注意节点之间的直接联系与两个节点的邻域结构之间的相似性,试图保留本地和全球网络结构。另一方面,RNNE通过传输先前的嵌入信息来降低噪声的影响。因此,RNNE可以考虑网络的静态和动态特性。我们在五个网络上评估RNNE,并与几种最先进的算法进行比较。结果表明,RNNE在重建,分类和链接预测方面的其他算法具有优势。

Network embedding is a very important method for network data. However, most of the algorithms can only deal with static networks. In this paper, we propose an algorithm Recurrent Neural Network Embedding (RNNE) to deal with dynamic network, which can be typically divided into two categories: a) topologically evolving graphs whose nodes and edges will increase (decrease) over time; b) temporal graphs whose edges contain time information. In order to handle the changing size of dynamic networks, RNNE adds virtual node, which is not connected to any other nodes, to the networks and replaces it when new node arrives, so that the network size can be unified at different time. On the one hand, RNNE pays attention to the direct links between nodes and the similarity between the neighborhood structures of two nodes, trying to preserve the local and global network structure. On the other hand, RNNE reduces the influence of noise by transferring the previous embedding information. Therefore, RNNE can take into account both static and dynamic characteristics of the network.We evaluate RNNE on five networks and compare with several state-of-the-art algorithms. The results demonstrate that RNNE has advantages over other algorithms in reconstruction, classification and link predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源