论文标题
宽带毫米波MIMO的Beamspace通道估计:一种模型驱动的无监督学习方法
Beamspace Channel Estimation for Wideband Millimeter-Wave MIMO: A Model-Driven Unsupervised Learning Approach
论文作者
论文摘要
毫米波(MMWave)通信一直是未来无线网络的有前途的技术之一,可以集成了广泛的数据需求应用程序。为了补偿MMWave频段中的大通道衰减并避免高硬件成本,考虑了基于镜头的Beamspace大量多输入多输出(MIMO)系统。但是,宽带MMWave系统中的横梁斜视效果使通道估计非常具有挑战性,尤其是当接收器配备有限数量的射频(RF)链时。此外,在新环境中使用MMWave系统之前,无法获得真实的通道数据,这使得不可能使用真实的数据集训练基于深度学习(DL)基于基于的频道估计器。为了解决该问题,我们提出了一个由模型驱动的无监督学习网络,称为学习基于Denoising的广义期望一致(LDGEC)信号恢复网络。通过利用Stein的无偏风险估计器损失,只有使用与Pilot符号相对应的有限测量值,而不是真实的通道数据,才能对LDGEC网络进行训练。即使是为无监督学习而设计的,LDGEC网络也可以通过Denoiser-denoiser Way对真实渠道进行监督。数值结果表明,当接收器配备少量的RF链和低分辨率ADC时,基于LDGEC的基于LDGEC的估计量显着优于最先进的基于压缩感应的算法。
Millimeter-wave (mmWave) communications have been one of the promising technologies for future wireless networks that integrate a wide range of data-demanding applications. To compensate for the large channel attenuation in mmWave band and avoid high hardware cost, a lens-based beamspace massive multiple-input multiple-output (MIMO) system is considered. However, the beam squint effect in wideband mmWave systems makes channel estimation very challenging, especially when the receiver is equipped with a limited number of radio-frequency (RF) chains. Furthermore, the real channel data cannot be obtained before the mmWave system is used in a new environment, which makes it impossible to train a deep learning (DL)-based channel estimator using real data set beforehand. To solve the problem, we propose a model-driven unsupervised learning network, named learned denoising-based generalized expectation consistent (LDGEC) signal recovery network. By utilizing the Stein's unbiased risk estimator loss, the LDGEC network can be trained only with limited measurements corresponding to the pilot symbols, instead of the real channel data. Even if designed for unsupervised learning, the LDGEC network can be supervisingly trained with the real channel via the denoiser-by-denoiser way. The numerical results demonstrate that the LDGEC-based channel estimator significantly outperforms state-of-the-art compressive sensing-based algorithms when the receiver is equipped with a small number of RF chains and low-resolution ADCs.