论文标题
摄动理论中二阶量子重力的连续性极限
The continuum limit of quantum gravity at second order in perturbation theory
论文作者
论文摘要
我们表明,基于爱因斯坦 - 希尔伯特动作的扰动量子重力具有新颖的连续性极限。重新归一化的轨迹从沿高斯固定点(略有)相关方向散发出来,但进入差异不变的子空间仅远低于动态生成的比例。我们表明,对于摄动理论中的纯量子重力到二阶,并且随着宇宙学常数的消失,结果与标准定量中计算的结果相同。尽管出于运动原因,这种情况是可以在二阶上重新叠加的,但我们发现的结构一般起作用。一种可能性是,即使重力具有无限的数字耦合,重力也具有真正的一致连续性极限。但是,我们还基于这些流程方程的抛物线特性,建议一种可能的非扰动机制,该机制将根据牛顿的常数和宇宙常数来固定所有高阶耦合。
We show that perturbative quantum gravity based on the Einstein-Hilbert action, has a novel continuum limit. The renormalized trajectory emanates from the Gaussian fixed point along (marginally) relevant directions but enters the diffeomorphism invariant subspace only well below a dynamically generated scale. We show that for pure quantum gravity to second order in perturbation theory, and with vanishing cosmological constant, the result is the same as computed in the standard quantisation. Although this case is renormalizable at second order for kinematic reasons, the structure we uncover works in general. One possibility is that gravity has a genuine consistent continuum limit even though it has an infinite number couplings. However we also suggest a possible non-perturbative mechanism, based on the parabolic properties of these flow equations, which would fix all higher order couplings in terms of Newton's constant and the cosmological constant.