论文标题

半监督医学图像分割和域适应性的不确定性感知的多视图共同训练

Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation

论文作者

Xia, Yingda, Yang, Dong, Yu, Zhiding, Liu, Fengze, Cai, Jinzheng, Yu, Lequan, Zhu, Zhuotun, Xu, Daguang, Yuille, Alan, Roth, Holger

论文摘要

尽管在医学图像细分方面取得了巨大的成功,但基于深度学习的方法通常需要大量宣布的数据,这在医学图像分析领域可能非常昂贵。另一方面,未标记的数据更容易获取。半监督的学习和无监督的域适应性都具有未标记的数据,并且它们彼此密切相关。在本文中,我们提出了不确定性感知的多视图共同训练(UMCT),这是一个统一的框架,旨在解决这两个任务以进行体积医学图像细分。我们的框架能够有效利用未标记的数据以提高性能。我们首先将3D卷旋转并置于多个视图中,并在每个视图上训练3D深网。然后,我们通过在未标记的数据上执行多视图一致性来应用共同训练,在这种数据中,使用每个视图的不确定性估计来实现准确的标记。 NIH胰腺细分数据集和多器官分割数据集的实验显示了在半监督医学图像分段上提出的框架的最先进性能。在无监督的域适应设置下,我们通过将我们的多器官分割模型调整为医疗分割DeCathlon数据集中的两个病理器官来验证这项工作的有效性。此外,我们表明我们的UMCT-DA模型甚至可以有效地处理标记的源数据无法访问的具有挑战性的情况,从而证明了现实世界应用的强大潜力。

Although having achieved great success in medical image segmentation, deep learning-based approaches usually require large amounts of well-annotated data, which can be extremely expensive in the field of medical image analysis. Unlabeled data, on the other hand, is much easier to acquire. Semi-supervised learning and unsupervised domain adaptation both take the advantage of unlabeled data, and they are closely related to each other. In this paper, we propose uncertainty-aware multi-view co-training (UMCT), a unified framework that addresses these two tasks for volumetric medical image segmentation. Our framework is capable of efficiently utilizing unlabeled data for better performance. We firstly rotate and permute the 3D volumes into multiple views and train a 3D deep network on each view. We then apply co-training by enforcing multi-view consistency on unlabeled data, where an uncertainty estimation of each view is utilized to achieve accurate labeling. Experiments on the NIH pancreas segmentation dataset and a multi-organ segmentation dataset show state-of-the-art performance of the proposed framework on semi-supervised medical image segmentation. Under unsupervised domain adaptation settings, we validate the effectiveness of this work by adapting our multi-organ segmentation model to two pathological organs from the Medical Segmentation Decathlon Datasets. Additionally, we show that our UMCT-DA model can even effectively handle the challenging situation where labeled source data is inaccessible, demonstrating strong potentials for real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源