论文标题
从CMB光学深度和电子模式极化功率光谱的电离推断
Reionization inference from the CMB optical depth and E-mode polarization power spectra
论文作者
论文摘要
电离时代(EOR)取决于掌管培养基中第一个星系和结构的出生和演变的复杂天体物理学。 EOR模型依赖于宇宙微波背景(CMB)观测值,尤其是大规模的电子模式极化功率谱(EE PS)来帮助限制其高度不确定的参数。但是,大多数EOR模型不是直接向前模型的EE PS,而是使用摘要统计量来约束 - 汤普森散射光学深度,$τ_e$。将CMB观测值压缩为$τ_e$,需要为EOR历史记录采用基集。常见的选择是非物理,红移对称双曲线切线(TANH)函数,其形状与基于层次结构形成的物理EOR模型不同。结合了公共EOR和CMB代码,21cmfast和类,在这里,我们量化了使用$τ_e$摘要统计量的推理如何影响对星系属性和EOR历史的限制。使用上次Planck 2018数据发布,我们表明,对EOR历史记录的边缘化约束对基集(TANH与物理模型)的选择更敏感,而不是对CMB的可能性统计量($τ_e$ vs vs ps)。例如,结构的生长暗示的EOR历史表明,部分电离的小尾巴延伸至更高的红移。但是,对于Planck 2018数据,使用$τ_e$的推理偏见可以忽略不计。使用来自高红移观测值的EOR约束,包括类星体黑暗分数,Galaxy UV亮度功能和CMB EE PS,我们的物理模型恢复了$τ_e= 0.0569^{+0.0081} _ { - 0.0066} $。
The Epoch of Reionization (EoR) depends on the complex astrophysics governing the birth and evolution of the first galaxies and structures in the intergalactic medium. EoR models rely on cosmic microwave background (CMB) observations, and in particular the large-scale E-mode polarization power spectra (EE PS), to help constrain their highly uncertain parameters. However, rather than directly forward-modelling the EE PS, most EoR models are constrained using a summary statistic -- the Thompson scattering optical depth, $τ_e$. Compressing CMB observations to $τ_e$ requires adopting a basis set for the EoR history. The common choice is the unphysical, redshift-symmetric hyperbolic tangent (Tanh) function, which differs in shape from physical EoR models based on hierarchical structure formation. Combining public EoR and CMB codes, 21cmFAST and CLASS, here we quantify how inference using the $τ_e$ summary statistic impacts the resulting constraints on galaxy properties and EoR histories. Using the last Planck 2018 data release, we show that the marginalized constraints on the EoR history are more sensitive to the choice of the basis set (Tanh vs physical model) than to the CMB likelihood statistic ($τ_e$ vs PS). For example, EoR histories implied by the growth of structure show a small tail of partial reionization extending to higher redshifts. However, biases in inference using $τ_e$ are negligible for the Planck 2018 data. Using EoR constraints from high-redshift observations including the quasar dark fraction, galaxy UV luminosity functions and CMB EE PS, our physical model recovers $τ_e=0.0569^{+0.0081}_{-0.0066}$.