论文标题
计算触手倍曲面的Rabinowitz浮子同源性
Computing the Rabinowitz Floer homology of tentacular hyperboloids
论文作者
论文摘要
我们计算了一类非紧凑型倍boloid的Rabinowitz Floer同源性$σ\ Simeq S^{N+K-1} \ Times \ Times \ Mathbb {R}^{n-k} $。使用紧凑型球的嵌入$σ_0\ simeq s^{2k-1} $中的hypersurface $σ$,我们从$σ_0$的浮子综合体中构建了$σ$的链条图。与紧凑的情况相反,$σ$的Rabinowitz Floer同源组既不为零,也不等于其单数同源性。结果,我们推断出温斯坦的猜想对于这种倍曲底的任何强烈触手变形构成。
We compute the Rabinowitz Floer homology for a class of non-compact hyperboloids $Σ\simeq S^{n+k-1}\times\mathbb{R}^{n-k}$. Using an embedding of a compact sphere $Σ_0\simeq S^{2k-1}$ into the hypersurface $Σ$, we construct a chain map from the Floer complex of $Σ$ to the Floer complex of $Σ_0$. In contrast to the compact case, the Rabinowitz Floer homology groups of $Σ$ are both non-zero and not equal to its singular homology. As a consequence, we deduce that the Weinstein Conjecture holds for any strongly tentacular deformation of such a hyperboloid.