论文标题

通过连续的功能梯度优化对非凸模型进行指导学习

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization

论文作者

Johnson, Rie, Zhang, Tong

论文摘要

本文为训练非凸模型(例如神经网络)提供了连续的功能梯度优化框架,在该模型中,训练是由功能空间中的镜下下降驱动的。我们提供了从该框架得出的训练方法的理论分析和实证研究。结果表明,该方法比标准训练技术的性能更好。

This paper presents a framework of successive functional gradient optimization for training nonconvex models such as neural networks, where training is driven by mirror descent in a function space. We provide a theoretical analysis and empirical study of the training method derived from this framework. It is shown that the method leads to better performance than that of standard training techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源