论文标题

从减法连接过程中的相干超导量子位

Coherent superconducting qubits from a subtractive junction fabrication process

论文作者

Stehli, Alexander, Brehm, Jan David, Wolz, Tim, Baity, Paul, Danilin, Sergey, Seferai, Valentino, Rotzinger, Hannes, Ustinov, Alexey V., Weides, Martin

论文摘要

约瑟夫森隧道连接是几乎所有超导电子电路(包括Qubits)的核心。通常,使用阴影蒸发技术制造量子位的连接处,以减少超导膜界面的介电损耗贡献。然而,近年来,亚微米量表重叠连接开始引起人们的注意。与阴影掩码技术相比,不需要角度依赖性沉积,也不需要独立的桥梁或重叠,这是晶圆尺度处理的重大局限性。这是以在制造过程中打破真空的成本,但简化了多层电路中的集成,实施截然不同的连接尺寸,并在工业标准的过程中可以更大规模地制造。在这项工作中,我们证明了用于制造重叠连接的减法过程的可行性。在一系列测试接触中,我们发现6个月内平均正常状态阻力的年龄较低。我们通过在超导式transmon Qubt中使用它们来评估连贯性的相干性能。在时间域实验中,我们发现,最佳设备的量子寿命和连贯性时间平均大于$ 20 \,\ si {\ si {\ micro \ second} $。最后,我们讨论了我们技术的潜在改进。这项工作为使用高级材料和生长过程的更标准化的过程铺平了道路,这构成了大规模制造超导量子电路的重要步骤。

Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits. Typically, the junctions for qubits are fabricated using shadow evaporation techniques to reduce dielectric loss contributions from the superconducting film interfaces. In recent years, however, sub-micron scale overlap junctions have started to attract attention. Compared to shadow mask techniques, neither an angle dependent deposition nor free-standing bridges or overlaps are needed, which are significant limitations for wafer-scale processing. This comes at the cost of breaking the vacuum during fabrication, but simplifies integration in multi-layered circuits, implementation of vastly different junction sizes, and enables fabrication on a larger scale in an industrially-standardized process. In this work, we demonstrate the feasibility of a subtractive process for fabrication of overlap junctions. In an array of test contacts, we find low aging of the average normal state resistance of only 1.6\% over 6 months. We evaluate the coherence properties of the junctions by employing them in superconducting transmon qubits. In time domain experiments, we find that both, the qubit life- and coherence time of our best device, are on average greater than $20\,\si{\micro\second}$. Finally, we discuss potential improvements to our technique. This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源