论文标题

用几何知识来增强深层神经网络:调查

Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey

论文作者

Rath, Matthias, Condurache, Alexandru Paul

论文摘要

深层神经网络通过利用大量培训数据来实现最新的问题设置。但是,收集,存储和 - 在监督学习的情况下 - 标记数据是昂贵且耗时的。此外,由于网络通常被视为黑匣子,评估网络的概括能力或预测输入转换下推断的输出变化是如何复杂的。这两个问题都可以通过将先验知识纳入神经网络来缓解。受到计算机视觉任务中卷积神经网络成功的启发的一种有希望的方法是结合有关问题的对称几何转换的知识,以解决以可预测的方式影响输出的一种。这有望提高数据效率和更可解释的网络输出。在这项调查中,我们试图简要概述,以了解将几何知识知识纳入神经网络中的不同方法。此外,我们将这些方法连接到用于自动驾驶的3D对象检测,在应用这些方法时,我们期望有希望的结果。

Deep Neural Networks achieve state-of-the-art results in many different problem settings by exploiting vast amounts of training data. However, collecting, storing and - in the case of supervised learning - labelling the data is expensive and time-consuming. Additionally, assessing the networks' generalization abilities or predicting how the inferred output changes under input transformations is complicated since the networks are usually treated as a black box. Both of these problems can be mitigated by incorporating prior knowledge into the neural network. One promising approach, inspired by the success of convolutional neural networks in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations of the problem to solve that affect the output in a predictable way. This promises an increased data efficiency and more interpretable network outputs. In this survey, we try to give a concise overview about different approaches that incorporate geometrical prior knowledge into neural networks. Additionally, we connect those methods to 3D object detection for autonomous driving, where we expect promising results when applying those methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源