论文标题

随机均质化的大规模规律性,无差漂移

Large-scale regularity in stochastic homogenization with divergence-free drift

论文作者

Fehrman, Benjamin

论文摘要

我们为随机环境提供了一个简单的证明,该证明是在平均零,无差异漂移的随机环境中,假设漂移允许固定的$ l^d $ - l^d $ - 积分流矩阵中的$ d \ geq 3 $或$ l^{2+δ} $ d = 2 $ d = 2 $。此外,我们证明环境几乎可以满足大规模的Hölder规律性估算和一阶Liouville原则。

We provide a simple proof of quenched stochastic homogenization for random environments with a mean zero, divergence-free drift under the assumption that the drift admits a stationary $L^d$-integrable stream matrix in $d\geq 3$ or an $L^{2+δ}$-integrable stream matrix in $d=2$. In addition, we prove that the environment almost surely satisfies a large-scale Hölder regularity estimate and first-order Liouville principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源