论文标题
有限性猜想在SL(2,z> = 0)^2中保存
The finiteness conjecture holds in SL(2,Z>=0)^2
论文作者
论文摘要
令a,b为具有大于或等于2的sl(2,r)中的矩阵。假设对a,b是连贯定向的,即可以将其连接到具有非负条品的对对。还假定A,B^(-1)也是相干定向的,或A,B具有整数条目。然后,Lagarias-wang的有限性猜想为{a,b}的集合所保留,并在{a,b,ab,a^2b,ab^2}中具有最佳乘积。特别是,它适用于SL(2,z> = 0)中的每个矩阵对。
Let A,B be matrices in SL(2,R) having trace greater than or equal to 2. Assume the pair A,B is coherently oriented, that is, can be conjugated to a pair having nonnegative entries. Assume also that either A,B^(-1) is coherently oriented as well, or A,B have integer entries. Then the Lagarias-Wang finiteness conjecture holds for the set {A,B}, with optimal product in {A,B,AB,A^2B,AB^2}. In particular, it holds for every matrix pair in SL(2,Z>=0).